Функция многих переменных примеры. Функция двух и более переменных. Её область определения. §2. Предел и непрерывность функции многих переменных

До сих пор нами рассматривалась простейшая функциональная модель, в которой функция зависит от единственного аргумента . Но при изучении различных явлений окружающего мира мы часто сталкиваемся с одновременным изменением более чем двух величин, и многие процессы можно эффективно формализовать функцией нескольких переменных , где – аргументы или независимые переменные . Начнём разработку темы с наиболее распространенной на практике функции двух переменных .

Функцией двух переменных называется закон , по которому каждой паре значений независимых переменных (аргументов) из области определения соответствует значение зависимой переменной (функции).

Данную функцию обозначают следующим образом:

Либо , или же другой стандартной буквой:

Поскольку упорядоченная пара значений «икс» и «игрек» определяет точку на плоскости , то функцию также записывают через , где – точка плоскости с координатами . Такое обозначение широко используется в некоторых практических заданиях.

Геометрический смысл функции двух переменных очень прост. Если функции одной переменной соответствует определённая линия на плоскости (например, – всем знакомая школьная парабола), то график функции двух переменных располагается в трёхмерном пространстве. На практике чаще всего приходится иметь дело с поверхностью , но иногда график функции может представлять собой, например, пространственную прямую (ые) либо даже единственную точку.

С элементарным примером поверхности мы хорошо знакомы ещё из курса аналитической геометрии – это плоскость . Предполагая что , уравнение легко переписать в функциональном виде:

Важнейший атрибут функции 2 переменных – это уже озвученная область определения .

Областью определения функции двух переменных называется множество всех пар , для которых существует значение .

Графически область определения представляет собой всю плоскость либо её часть . Так, областью определения функции является вся координатная плоскость – по той причине, что для любой точки существует значение .

Но такой праздный расклад бывает, конечно же, не всегда:

Как двух переменных?

Рассматривая различные понятия функции нескольких переменных, полезно проводить аналогии с соответствующими понятиями функции одной переменной. В частности, при выяснении области определения мы обращали особое внимание на те функции, в которых есть дроби, корни чётной степени, логарифмы и т. д. Здесь всё точно так же!

Задача на нахождение области определения функции двух переменных практически со 100%-ной вероятностью встретится вам в тематической работе, поэтому я разберу приличное количество примеров:

Пример 1

Найти область определения функции

Решение : так как знаменатель не может обращаться в ноль, то:

Ответ : вся координатная плоскость кроме точек, принадлежащих прямой

Да-да, ответ лучше записать именно в таком стиле. Область определения функции двух переменных редко обозначают каким-либо символом, гораздо чаще используют словесное описание и/или чертёж .

Если бы по условию требовалось выполнить чертёж, то следовало бы изобразить координатную плоскость и пунктиром провести прямую . Пунктир сигнализирует о том, что линия не входит в область определения.

Как мы увидим чуть позже, в более трудных примерах без чертежа и вовсе не обойтись.

Пример 2

Найти область определения функции

Решение : подкоренное выражение должно быть неотрицательным:

Ответ : полуплоскость

Графическое изображение здесь тоже примитивно: чертим декартову систему координат, сплошной линией проводим прямую и штрихуем верхнюю полуплоскость . Сплошная линия указывает на тот факт, что она входит в область определения.

Внимание! Если вам ХОТЬ ЧТО-ТО не понятно по второму примеру, пожалуйста, подробно изучите/повторите урок Линейные неравенства – без него придётся очень туго!

Миниатюра для самостоятельного решения:

Пример 3

Найти область определения функции

Двухстрочное решение и ответ в конце урока.

Продолжаем разминаться:

Пример 4

И изобразить её на чертеже

Решение : легко понять, что такая формулировка задачи требует выполнения чертёжа (даже если область определения очень проста). Но сначала аналитика: подкоренное выражением должно быть неотрицательным: и, учитывая, что знаменатель не может обращаться в ноль, неравенство становится строгим:

Как определить область, которую задаёт неравенство ? Рекомендую тот же алгоритм действий, что и при решении линейных неравенств .

Сначала чертим линию , которую задаёт соответствующее равенство . Уравнение определяет окружность с центром в начале координат радиуса , которая делит координатную плоскость на две части – «внутренность» и «внешность» круга. Так как неравенство у нас строгое , то сама окружность заведомо не войдёт в область определения и поэтому её нужно провести пунктиром .

Теперь берём произвольную точку плоскости, не принадлежащую окружности , и подставляем её координаты в неравенство . Проще всего, конечно же, выбрать начало координат :

Получено неверное неравенство , таким образом, точка не удовлетворяет неравенству . Более того, данному неравенству не удовлетворяет и любая точка, лежащая внутри круга, и, стало быть, искомая область определения – внешняя его часть. Область определения традиционно штрихуется:

Желающие могут взять любую точку, принадлежащую заштрихованной области и убедиться, что её координаты удовлетворяют неравенству . Кстати, противоположное неравенство задаёт круг с центром в начале координат, радиуса .

Ответ : внешняя часть круга

Вернёмся к геометрическому смыслу задачи: вот мы нашли область определения и заштриховали её, что это значит? Это значит, что в каждой точке заштрихованной области существует значение «зет» и графически функция представляет собой следующую поверхность :

На схематическом чертеже хорошо видно, что данная поверхность местами расположена над плоскостью (ближний и дальний от нас октанты) , местами – под плоскостью (левый и правый относительно нас октанты) . Также поверхность проходит через оси . Но поведение функции как таковое нам сейчас не очень интересно – важно, что всё это происходит исключительно в области определения . Если мы возьмём любую точку , принадлежащую кругу – то никакой поверхности там не будет (т.к. не существует «зет») , о чём и говорит круглый пробел в середине рисунка.

Пожалуйста, хорошо осмыслите разобранный пример, поскольку в нём я подробнейшим образом разъяснил саму суть задачи.

Следующее задание для самостоятельного решения:

Пример 5


Краткое решение и чертёж в конце урока. Вообще, в рассматриваемой теме среди линий 2-го порядка наиболее популярна именно окружность, но, как вариант, в задачу могут «затолкать» эллипс , гиперболу или параболу .

Идём на повышение:

Пример 6

Найти область определения функции

Решение : подкоренное выражение должно быть неотрицательным: и знаменатель не может равняться нулю: . Таким образом, область определения задаётся системой .

С первым условием разбираемся по стандартной схеме рассмотренной на уроке Линейные неравенства : чертим прямую и определяем полуплоскость, которая соответствует неравенству . Поскольку неравенство нестрогое , то сама прямая также будет являться решением.

Со вторым условием системы тоже всё просто: уравнение задаёт ось ординат, и коль скоро , то её следует исключить из области определения.

Выполним чертёж, не забывая, что сплошная линия обозначает её вхождение в область определения, а пунктир – исключение из этой области:

Следует отметить, что здесь мы уже фактически вынуждены сделать чертёж. И такая ситуация типична – во многих задачах словесное описание области затруднено, а даже если и опишите, то, скорее всего, вас плохо поймут и заставят изобразить область.

Ответ : область определения:

К слову, такой ответ без чертежа действительно смотрится сыровато.

Ещё раз повторим геометрический смысл полученного результата: в заштрихованной области существует график функции , который представляет собой поверхность трёхмерного пространства . Эта поверхность может располагаться выше/ниже плоскости , может пересекать плоскость – в данном случае нам всё это параллельно. Важен сам факт существования поверхности, и важно правильно отыскать область, в которой она существует.

Пример 7

Найти область определения функции

Это пример для самостоятельного решения. Примерный образец чистового оформления задачи в конце урока.

Не редкость, когда вроде бы простые на вид функции вызывают далеко не скороспелое решение:

Пример 8

Найти область определения функции

Решение : используя формулу разности квадратов , разложим подкоренное выражение на множители: .

Произведение двух множителей неотрицательно , когда оба множителя неотрицательны: ИЛИ когда оба неположительны: . Это типовая фишка. Таким образом, нужно решить две системы линейных неравенств и ОБЪЕДИНИТЬ полученные области. В похожей ситуации вместо стандартного алгоритма гораздо быстрее работает метод научного, а точнее, практического тыка =)

Чертим прямые , которые разбивают координатную плоскость на 4 «уголка». Берём какую-нибудь точку, принадлежащую верхнему «уголку», например, точку и подставляем её координаты в уравнения 1-й системы: . Получены верные неравенства, а значит, решением системы является весь верхний «уголок». Штрихуем.

Теперь берём точку , принадлежащую правому «уголку». Осталась 2-я система, в которую мы и подставляем координаты этой точки: . Второе неравенство неверно, следовательно, и весь правый «уголок» не является решением системы .

Аналогичная история с левым «уголком», который тоже не войдёт в область определения.

И, наконец, подставляем во 2-ю систему координаты подопытной точки нижнего «уголка»: . Оба неравенства верны, а значит, решением системы является и весь нижний «уголок», который тоже следует заштриховать.

В реальности так подробно расписывать, естественно, не надо – все закомментированные действия легко выполняются устно!

Ответ : область определения представляет собой объединение решений систем .

Как вы догадываетесь, без чертежа такой ответ вряд ли пройдёт, и это обстоятельство вынуждает взять в руки линейку с карандашом, хоть того и не требовало условие.

А это ваш орешек:

Пример 9

Найти область определения функции

Хороший студент всегда скучает по логарифмам:

Пример 10

Найти область определения функции

Решение : аргумент логарифма строго положителен, поэтому область определения задаётся системой .

Неравенство указывает на правую полуплоскость и исключает ось .

Со вторым условием ситуация более затейлива, но тоже прозрачна. Вспоминаем синусоиду . В качестве аргумента выступает «игрек», но это не должно смущать – игрек, так игрек, зю, так зю. Где синус больше нуля? Синус больше нуля, например, на интервале . Поскольку функция периодична, то таких интервалов бесконечно много и в свёрнутом виде решение неравенства запишется следующим образом:
, где – произвольное целое число.

Бесконечное количество промежутков, понятно, не изобразить, поэтому ограничимся интервалом и его соседями:

Выполним чертёж, не забывая, что согласно первому условию, наше поле деятельности ограничивается строго правой полуплоскостью:

мда …какой-то чертёж-призрак получился… доброе приведение высшей математики…

Ответ :

Следующий логарифм ваш:

Пример 11

Найти область определения функции

В ходе решения придётся построить параболу , которая поделит плоскость на 2 части – «внутренность», находящуюся между ветвями, и внешнюю часть. Методика нахождения нужной части неоднократно фигурировала в статье Линейные неравенства и предыдущих примерах этого урока.

Решение, чертёж и ответ в конце урока.

Заключительные орешки параграфа посвящены «аркам»:

Пример 12

Найти область определения функции

Решение : аргумент арксинуса должен находиться в следующих пределах:

Дальше есть две технические возможности: более подготовленные читатели по аналогии с последними примерами урока Область определения функции одной переменной могут «ворочать» двойное неравенство и оставить в середине «игрек». Чайникам же рекомендую преобразовать «паровозик» в равносильную систему неравенств :

Система решается как обычно – строим прямые и находим нужные полуплоскости. В результате:

Обратите внимание, что здесь границы входят в область определения и прямые проводятся сплошными линиями. За этим всегда нужно тщательно следить, чтобы не допустить грубой ошибки.

Ответ : область определения представляет собой решение системы

Пример 13

Найти область определения функции

В образце решения используется продвинутая техника – преобразуется двойное неравенство.

На практике также иногда встречаются задачи на нахождение области определения функции трёх переменных . Областью определения функции трёх переменных может являться всё трёхмерное пространство, либо его часть. В первом случае функция определена для любой точки пространства, во втором – только для тех точек , которые принадлежат некоторому пространственному объекту, чаще всего – телу . Это может быть прямоугольный параллелепипед, эллипсоид , «внутренность» параболического цилиндра и т.д. Задача отыскания области определения функции трёх переменных обычно состоит в нахождении этого тела и выполнении трёхмерного чертежа. Однако такие примеры довольно редкИ (нашёл у себя всего пару штук) , и поэтому я ограничусь лишь этим обзорным абзацем.

Линии уровня

Для лучшего понимания этого термина будем сравнивать ось с высотой : чем больше значение «зет» – тем больше высота, чем меньше значение «зет» – тем высота меньше. Также высота может быть и отрицательной.

Функция в своей области определения представляет собой пространственный график, для определённости и бОльшей наглядности будем считать, что это тривиальная поверхность. Что такое линии уровня ? Образно говоря, линии уровня – это горизонтальные «срезы» поверхности на различных высотах. Данные «срезы» или правильнее сказать, сечения проводятся плоскостями , после чего проецируются на плоскость .

Определение : линией уровня функции называется линия на плоскости , в каждой точке которой функция сохраняет постоянное значение: .

Таким образом, линии уровня помогают выяснить, как выглядит та или иная поверхность – причём помогают без построения трёхмерного чертежа! Рассмотрим конкретную задачу:

Пример 14

Найти и построить несколько линий уровня графика функции

Решение : исследуем форму данной поверхности с помощью линий уровня. Для удобства развернём запись «задом наперёд»:

Очевидно, что в данном случае «зет» (высота) заведомо не может принимать отрицательные значения (так как сумма квадратов неотрицательна) . Таким образом, поверхность располагается в верхнем полупространстве (над плоскостью ).

Поскольку в условии не сказано, на каких конкретно высотах нужно «срезать» линии уровня, то мы вольнЫ выбрать несколько значений «зет» на своё усмотрение.

Исследуем поверхность на нулевой высоте, для этого поставим значение в равенство :

Решением данного уравнения является точка . То есть, при линия уровня представляет собой точку .

Поднимаемся на единичную высоту и «рассекаем» нашу поверхность плоскостью (подставляем в уравнение поверхности) :

Таким образом, для высоты линия уровня представляет собой окружность с центром в точке единичного радиуса .

Напоминаю, что все «срезы» проецируются на плоскость , и поэтому у точек я записываю две, а не три координаты!

Теперь берём, например, плоскость и «разрезаем ей» исследуемую поверхность (подставляем в уравнение поверхности) :

Таким образом, для высоты линия уровня представляет собой окружность с центром в точке радиуса .

И, давайте построим ещё одну линию уровня, скажем, для :

окружность с центром в точке радиуса 3 .

Линии уровня, как я уже акцентировал внимание, располагаются на плоскости , но каждая линия подписывается – какой высоте она соответствует:

Нетрудно понять, что другие линии уровня рассматриваемой поверхности тоже представляют собой окружности, при этом, чем выше мы поднимаемся вверх (увеличиваем значение «зет») – тем больше становится радиус. Таким образом, сама поверхность представляет собой бесконечную чашу с яйцевидным дном, вершина которой расположена на плоскости . Эта «чаша» вместе с осью «выходит прямо на вас» из экрана монитора, то есть вы смотрите в её дно =) И это неспроста! Только я так убойно наливаю на посошок =) =)

Ответ : линии уровня данной поверхности представляют собой концентрические окружности вида

Примечание : при получается вырожденная окружность нулевого радиуса (точка)

Само понятие линии уровня пришло из картографии. Перефразируя устоявшийся математический оборот, можно сказать, что линия уровня – это географическое место точек одинаковой высоты . Рассмотрим некую гору с линиями уровня 1000, 3000 и 5000 метров:

На рисунке хорошо видно, что левый верхний склон горы гораздо круче правого нижнего склона. Таким образом, линии уровня позволяют отразить рельеф местности на «плоской» карте. Кстати, здесь приобретают вполне конкретный смысл и отрицательные значения высоты – ведь некоторые участки поверхности Земли располагаются ниже нулевой отметки уровня мирового океана.

До сих пор мы занимались изучением функции одной переменной, т.е. изучением переменной, значения которой зависят от значений одной независимой переменной.

На практике часто приходится иметь дело с величинами, численные значения которых зависят от значений нескольких изменяющихся независимо друг от друга величин. Изучение таких величин приводит к понятию функции нескольких переменных. Приведем несколько примеров.

Пример 1. Площадь прямоугольника есть функция двух независимо друг от друга изменяющихся переменных – сторон прямоугольника и : .

Пример 2. Работа электрического тока на участке цепи зависит от разности потенциалов на концах участка, силы тока и времени : .

Пример 3. Температура , измеряемая в различных точках некоторого тела, есть функция от координат точки, в которой она измеряется, и от момента времени : .

Определение 1. Назовем n -мерной точкой упорядоченный набор из чисел . Числа называются координатами -мерной точки . Множество всевозможных -мерных точек назовем n-мерным пространством и будем обозначать его . Точку назовем началом координат в -мерном пространстве, а число – размерностью пространства.

Частные случаи :

1. – числовая прямая;

2. – плоскость;

3. – трехмерное пространство.

Определение 2. Пусть имеется переменных величин, и каждому набору их значений из некоторого множества соответствует одно вполне определенное значение переменной величины . Тогда говорят, что задана функция нескольких переменных

Переменные называются независимыми переменными или аргументами , – зависимой переменной , символ – закон соответствия .

Также как и функцию одной переменной функцию нескольких переменных можно задать явно – и неявно – .

Любую явную функцию нескольких переменных можно представить как функцию точки в -мерном пространстве: , где точка определяется набором ее координат.

Если каждой точке из области определения соответствует одно значение , то функция называется однозначной , в противном случае – многозначной .

Множество называется областью определения функции , оно является подмножеством -мерного пространства. Подобно промежутку область может быть замкнутой или открытой в зависимости от того, содержит она свою границу или нет.

Естественной областью определения функции (1) называется множество точек , координаты которых однозначно обеспечивают вещественные и конечные значения функции . В дальнейшем, если дополнительные ограничения на изменение независимых переменных постановкой задачи не накладываются, под областью определения функции будем подразумевать ее естественную область определения.


Рассмотрим более подробно два частных случая, которые являются наиболее простыми и допускают геометрическую интерпретацию.

1. Функция двух переменных (n = 2)

Функцию двух переменных будем обозначать . Частное значение функции при , или в точке записывают в виде , , или .

Область определения функции есть подмножество точек координатной плоскости . В частности, областью определения функции может быть вся плоскость или часть плоскости, ограниченная линиями. Линию, ограничивающую данную область, будем называть границей области. Точки плоскости, не лежащие на границе, будем называть внутренними .

Пример 4. Функция определена на всей плоскости .

Пример 5. Функции определена на всей плоскости, за исключением прямой .

Пример 6. Областью определения функции является множество точек плоскости , координаты которых удовлетворяют соотношению , т.е. круг радиуса 1 и с центром в начале координат. Область определения этой функции является замкнутой.

Следующий пример рассмотрим более подробно.

Пример 7. Найти область определения функции .

Решение.

Логарифм определен только при положительном значении аргумента, поэтому на аргументы имеется одно условие: .

Чтобы изобразить геометрически область , найдем сначала ее границу: . Полученное уравнение определяет параболу, вершина которой расположена в точке , а ось направлена в положительную сторону оси .

Рис. 1.1
Парабола делит всю плоскость на две части – внутреннюю и внешнюю по отношению к параболе. Для точек одной из этих частей выполняется неравенство , а для другой (на самой параболе ). Чтобы установить, какая из этих двух частей является областью определения данной функции, т.е. удовлетворяет условию , достаточно проверить это условие для какой-нибудь одной точки, не лежащей на параболе. Например, начало координат лежит внутри параболы и удовлетворяет нужному условию.

Следовательно, искомая область состоит из внутренних точек параболы. Сама парабола в область не входит, значит, область отрытая.

Определение 3.Окрестностью точки называется любой открытый круг, содержащий точку .

В частности, -окрестностью называется открытый круг с центром в точке и радиусом .

Очевидно, круг на плоскости есть двумерный аналог интервала на прямой.

При изучении функций нескольких переменных во многом используется уже разработанный математический аппарат для функции одной переменной. А именно: любой функции можно поставить в соответствие пару функций одной переменной: при фиксированном значении функцию и при фиксированном значении функцию .

Следует иметь в виду, что хотя функции и имеют одно и то же "происхождение", вид их может существенно различаться.

Пример 9. Рассмотрим функцию . При функция является степенной, а при функция является показательной.

Геометрическое изображение функции двух переменных.

Как известно, функция одной переменной может быть изображена некоторой кривой на плоскости, если рассматривать значения ее аргумента как абсциссы, а значения функции как ординаты точек кривой.

Подобным же образом функция двух переменных может быть изображена графически.

Рассмотрим функцию , определенную в области на плоскости и систему прямоугольных декартовых координат . Каждой точке множества поставим в соответствие точку пространства , аппликата которой равна значению функции в точке : . Совокупность всех таких точек представляет собой некоторую поверхность, которую естественно принять за графическое изображение функции .

Определение 4.Графикомфункции двух переменных называется множество точек трехмерного пространства , аппликата которых связана с абсциссой и ординатой функциональным соотношением .

Рис. 1.2.
Таким образом, графиком функции двух переменных является поверхность , проектирующаяся на плоскость в область определения функции . Каждый перпендикуляр к плоскости пересекает поверхность не более чем в одной точке.

2. Функция трех переменных (n = 3)

Функцию трех переменных будем обозначать , при этом будем считать, что , и – независимые переменные (или аргументы), а – зависимая переменная (или функция).

Областью определения такой функции называется множество всех рассматриваемых троек чисел. Если функция задана аналитически, под ее естественной областью определения подразумевают совокупность всех троек чисел , для которых функция принимает действительные значения.

Определение 6.Окрестностью точки называется любая открытая сфера, содержащая точку .

В частности, -окрестностью называется открытая сфера с центром в точке и радиусом .

Изображая тройки чисел точками пространства , можно рассматривать функцию трех переменных как функцию точки пространства, а область определения функции трех переменных – как некоторое множество точек пространства.

Рассматривая функции одной переменной, мы указывали, что при изучении многих явлений приходится встречаться с функциями двух и более независимых переменных. Приведем несколько примеров.

Пример 1. Площадь S прямоугольника со сторонами, длины которых равны х и у, выражается формулой Каждой паре значений х и у соответствует определенное значение площади S; S есть функция двух переменных.

Пример 2. Объем V прямоугольного параллелепипеда с ребрами, длины которых равны х, выражается формулой . Здесь V есть функция трех переменных х.

Пример 3. Дальность R полета снаряда, выпущенного с начальной скоростью . Из орудия, ствол которого наклонен к горизонту под углом , выражается формулой если пренебречь сопротивлением воздуха). Здесь - ускорение силы тяжести. Для каждой пары значений эта формула дает определенное значение R, т. е. R является функцией двух переменных

Пример 4. и Здесь и есть функция четырех переменных

Определение 1. Если каждой паре значений двух не зависимых друг от друга переменных величин х и у из некоторой области их изменения D, соответствует определенное значение величины , то мы говорим, что есть функция двух независимых переменных х и у, определенная в области

Символически функция двух переменных обозначается так:

Функция двух переменных может быть задана, например, с помощью таблицы или аналитически - с помощью формулы, как это сделано в рассмотренных выше четырех примерах. На основании формулы можно составить таблицу значений функции для некоторых пар значений независимых переменных. Так, для

первого примера можно составить следующую таблицу:

В этой таблице на пересечении строки и столбца, соответствующих определенным значениям х и у, проставлено соответствующее значение функции

Если функциональная зависимость получается в результате измерений величины z при экспериментальном изучении какого-либо явления, то сразу получается таблица, определяющая z как функцию двух переменных. В этом случае функция задается только таблицей.

Как и в случае одной независимой переменной, функция двух переменных существует, вообще говоря, не при любых значениях х и у.

Определение 2. Совокупность пар значений при которых определяется функция называется областью определения или областью существования этой функции.

Область определения функции наглядно иллюстрируется геометрически. Если каждую пару значений х и у мы будем изображать точкой в плоскости то область определения функции изобразится в виде некоторой совокупности точек на плоскости. Эту совокупность точек будем также называть областью определения функции. В частности, областью определения может быть и вся плоскость. В дальнейшем мы будем главным образом иметь дело с такими областями, которые представляют собой части плоскости, ограниченные линиями. Линию, ограничивающую данную область, будем называть границей области. Точки области, не лежащие на границе, будем называть внутренними точками области. Область, состоящая из одних внутренних точек, называется открытой или незамкнутой. Если же к области относятся и точки границы, то область называется замкнутой. Область называется ограниченной, если существует такая постоянная С, что расстояние любой точки М области от начала координат О меньше С, т. е. .

Пример 5. Определить естественную область определения функции

Аналитическое выражение имеет смысл при любых значениях х и у. Следовательно, естественной областью определения функции является вся плоскость

Пример 6. .

Для того чтобы имело действительное значение, нужно, чтобы под корнем стояло неотрицательное число, т. е. х и у должны удовлетворять неравенству или

Все точки координаты которых удовлетворяют указанному неравенству, лежат в круге радиуса 1 с центром в начале координат и на границе этого круга.

Пример 7. .

Так как логарифмы определены только для положительных чисел, то должно удовлетворяться неравенство или .

Это значит, что областью определения функции является половина плоскости, расположенная над прямой не включая самой прямой (рис. 166).

Пример 8. Площадь треугольника 5 представляет собой функцию основания и высоты

Областью определения этой функции является область как основание треугольника и его высота не могут быть ни отрицательными, ни нулем). Заметим, что область определения рассматриваемой функции не совпадает с естественной областью определения того аналитического выражения, с помощью которого задается функция, так как естественной областью определения выражения является, очевидно, вся плоскость Оху.

Функции многих переменных

§1. Понятие функции многих переменных.

Пусть имеется n переменных величин . Каждый набор
обозначает точку n - мерного множества
(п -мерный вектор).

Пусть даны множества
и
.

Опр . Если каждой точке
ставится в соответствие единственное число
, то говорят, что задана числовая функция n переменных:

.

называют областью определения,
- множеством значений данной функции.

В случае n =2 вместо
обычно пишут x , y , z . Тогда функция двух переменных имеет вид:

z = f (x , y ).

Например,
- функция двух переменных;

- функция трех переменных;

Линейная функция n переменных.

Опр . Графиком функции n переменных называется n - мерная гиперповерхность в пространстве
, каждая точка которой задается координатами

Например, графиком функции двух переменных z = f (x , y ) является поверхность в трехмерном пространстве, каждая точка которой задается координатами (x , y , z ) , где
, и
.

Поскольку график функции трех и более переменных изобразить не представляется возможным, в основном мы будем (для наглядности) рассматривать функции двух переменных.

Построение графиков функций двух переменных является довольно сложной задачей. Существенную помощь в ее решении может оказать построение так называемых линий уровня.

Опр . Линией уровня функции двух переменных z = f (x , y ) называется множество точек плоскости ХОУ , являющихся проекцией сечения графика функции плоскостью, параллельной ХОУ. В каждой точке линии уровня функция имеет одно и то же значение. Линии уровня описываются уравнением f (x , y )=с , где с – некоторое число. Линий уровня бесконечно много, и через каждую точку области определения можно провести одну из них.

Опр . Поверхностью уровня функции n переменных y = f (
) называется гиперповерхность в пространстве
, в каждой точке которой значение функции постоянно и равно некоторому значению с . Уравнение поверхности уровня: f (
)=с.

Пример . Построить график функции двух переменных

.

.

При с=1:
;
.

При с=4:
;
.

При с=9:
;
.

Линии уровня – концентрические окружности, радиус которых уменьшается с ростом z .

§2. Предел и непрерывность функции многих переменных.

Для функций многих переменных определяются те же понятия, что и для функции одной переменной. Например, можно дать определения предела и непрерывности функции.

Опр . Число А называется пределом функции двух переменных z = f (x , y ) при
,
и обозначается
, если для любого положительного числа найдется положительное число , такое, что если точка
удалена от точки
на расстояние меньше , то величины f (x , y ) и А отличаются меньше чем на .

Опр . Если функция z = f (x , y ) определена в точке
и имеет в этой точке предел, равный значению функции
, то она называется непрерывной в данной точке.

.

§3. Частные производные функции многих переменных.

Рассмотрим функцию двух переменных
.

Зафиксируем значение одного из ее аргументов, например , положив
. Тогда функция
есть функция одной переменной . Пусть она имеет производную в точке :

.

Данная производная называется частной производной (или частной производной первого порядка) функции
по в точке
и обозначается:
;
;
;
.

Разность называется частным приращением по и обозначается
:

Учитывая приведенные обозначения, можно записать


.

Аналогично определяется

.

Частной производной функции нескольких переменных по одной из этих переменных называется предел отношения частного приращения функции к приращению соответствующей независимой переменной, когда это приращение стремится к нулю.

При нахождении частной производной по какому-либо аргументу другие аргументы считаются постоянными. Все правила и формулы дифференцирования функций одной переменной справедливы для частных производных функции многих переменных.

Заметим, что частные производные функции являются функциями тех же переменных. Эти функции, в свою очередь, могут иметь частные производные, которые называются вторыми частными производными (или частными производными второго порядка) исходной функции.

Например, функция
имеет четыре частных производных второго порядка, которые обозначаются следующим образом:

;
;

;
.

и
- смешанные частные производные.

Пример. Найти частные производные второго порядка для функции

.

Решение.
,
.

,
.

,
.

Задание .

1. Найти частные производные второго порядка для функций

,
;

2. Для функции
доказать, что
.

Полный дифференциал функции многих переменных.

При одновременном изменении величин х и у функция
изменится на величину , называемую полным приращением функции z в точке
. Так же, как и в случае функции одной переменной, возникает задача о приближенной замене приращения
на линейную функцию от
и
. Роль линейного приближения выполняет полный дифференциал функции:

Полный дифференциал второго порядка:

=
.

=
.

В общем виде полный дифференциал п -го порядка имеет вид:

Производная по направлению. Градиент.

Пусть функция z = f (x , y ) определена в некоторой окрестности точки M(x , y ) и - некоторое направление, задаваемое единичным вектором
. Координаты единичного вектора выражаются через косинусы углов, образуемых вектором и осями координат и называемых направляющими косинусами:

,

.

При перемещении точки M(x , y ) в данном направлении l в точку
функция z получит приращение

называемое приращением функции в данном направлении l .

Если ММ 1 =∆l , то

Т

огда

О

пр
. Производной функции z = f (x , y ) по направлению называется предел отношения приращения функции в этом направлении к величине перемещения ∆l при стремлении последней к нулю:

Производная по направлению характеризует скорость изменения функции в данном направлении. Очевидно, что частные производные и представляют собой производные по направлениям, параллельным осям Ox и Oy . Нетрудно показать, что

Пример . Вычислить производную функции
в точке (1;1) по направлению
.

Опр . Градиентом функции z = f (x , y ) называется вектор с координатами, равными частным производным:

.

Рассмотрим скалярное произведение векторов
и
:

Легко видеть, что
, т.е. производная по направлению равна скалярному произведению градиента и единичного вектора направления .

Поскольку
, то скалярное произведение максимально, когда векторы одинаково направлены. Таким образом, градиент функции в точке задает направление наискорейшего возрастания функции в этой точке, а модуль градиента равен максимальной скорости роста функции.

Зная градиент функции, можно локально строить линии уровня функции.

Теорема . Пусть задана дифференцируемая функция z = f (x , y ) и в точке
градиент функции не равен нулю:
. Тогда градиент перпендикулярен линии уровня, проходящей через данную точку.

Таким образом, если, начиная с некоторой точки, строить в близких точках градиент функции и малую часть перпендикулярной ему линии уровня, то можно (с некоторой погрешностью) построить линии уровня.

Локальный экстремум функции двух переменных

Пусть функция
определена и непрерывна в некоторой окрестности точки
.

Опр . Точка
называется точкой локального максимума функции
, если существует такая окрестность точки , в которой для любой точки
выполняется неравенство:

.

Аналогично вводится понятие локального минимума.

Теорема (необходимое условие локального экстремума) .

Для того, чтобы дифференцируемая функция
имела локальный экстремум в точке
, необходимо, чтобы все ее частные производные первого порядка в этой точке были равны нулю:

Итак, точками возможного наличия экстремума являются те точки, в которых функция дифференцируема, а ее градиент равен 0:
. Как и в случае функции одной переменной, такие точки называются стационарными.

Определение. Переменная z (с областью изменения Z ) называется функцией двух независимых переменных х,у в множестве М , если каждой паре (х,у ) из множества М z из Z.

Определение. Множество М , в котором заданы переменные х,у, называется областью определения функции , множество Z –областью значений функции , а сами х,у – ее аргументами .

Обозначения: z = f(x,y), z = z(x,y).

Примеры.

Определение . Переменная z (с областью изменения Z ) называется функцией нескольких независимых переменных в множестве М , если каждому набору чисел из множества М по некоторому правилу или закону ставится в соответствие одно определенное значение z из Z. Понятия аргументов, области определения и области значения вводятся так же, как для функции двух переменных.

Обозначения: z = f , z = z .

Замечание. Так как пару чисел (х,у ) можно считать координатами некоторой точки на плоскости, то будем впоследствии использовать термин «точка» для пары аргументов функции двух переменных, а также для упорядоченного набора чисел , являющихся аргументами функции нескольких переменных.

Геометрическое изображение функции двух переменных

Рассмотрим функцию

z = f(x,y) , (15.1)

определенную в некоторой области М на плоскости Оху . Тогда множество точек трехмерного пространства с координатами (x,y,z) , где , является графиком функции двух переменных. Поскольку уравнение (15.1) определяет некоторую поверхность в трехмерном пространстве, она и будет геометрическим изображением рассматриваемой функции.

Область определения функции z = f(x,y) в простейших случаях представляет собой либо часть плоскости, ограниченную замкнутой кривой, причем точки этой кривой (границы области) могут принадлежать или не пренадлежать области определения, либо всю плоскость, либо,наконец, совокупностьнескольких частей плоскости xOy.


z = f(x,y)


Примерами могут служить уравнения плоскости z = ax + by + c

и поверхностей второго порядка: z = x ² + y ² (параболоид вращения),

(конус) и т.д.

Замечание. Для функции трех и более переменных будем пользоваться термином «поверхность в n -мерном пространстве», хотя изобразить подобную поверхность невозможно.

Линии и поверхности уровня

Для функции двух переменных, заданной уравнением (15.1), можно рассмотреть множество точек (х,у) плоскости Оху , для которых z принимает одно и то же постоянное значение, то есть z = const. Эти точки образуют на плоскости линию, называемую линией уровня .



Пример.

Найдем линии уровня для поверхности z = 4 – x ² - y ². Их уравнения имеют вид x ² + y ² = 4 – c (c =const) – уравнения концентрических окружностей с центром в начале координат и с радиусами . Например, при с =0 получаем окружность x ² + y ² = 4 .

Для функции трех переменных u = u (x, y, z) уравнение u (x, y, z) = c определяет поверхность в трехмерном пространстве, которую называют поверхностью уровня .

Пример.

Для функции u = 3x + 5y – 7z –12 поверхностями уровня будет семейство параллельных плоскостей, задаваемых уравнениями 3x + 5y – 7z –12 + с = 0.

Предел и непрерывность функции нескольких переменных

Введем понятие δ-окрестности точки М 0 (х 0 , у 0) на плоскости Оху как круга радиуса δ с центром в данной точке. Аналогично можно определить δ-окрестность в трехмерном пространстве как шар радиуса δ с центром в точке М 0 (х 0 , у 0 , z 0) . Для n -мерного пространства будем называть δ-окрестностью точки М 0 множество точек М с координатами , удовлетворяющими условию

где - координаты точки М 0 . Иногда это множество называют «шаром» в n -мерном пространстве.

Определение. Число А называется пределом функции нескольких переменных f в точке М 0 , если такое, что | f(M) – A | < ε для любой точки М из δ-окрестности М 0 .

Обозначения: .

Необходимо учитывать, что при этом точка М может приближаться к М 0 , условно говоря, по любой траектории внутри δ-окрестности точки М 0 . Поэтому следует отличать предел функции нескольких переменных в общем смысле от так называемых повторных пределов , получаемых последовательными предельными переходами по каждому аргументу в отдельности.

Примеры.

Замечание. Можно доказать, что из существования предела в данной точке в обычном смысле и существования в этой точке пределов по отдельным аргументам следует существование и равенство повторных пределов. Обратное утверждение неверно.

Определение Функция f называется непрерывной в точке М 0 , если (15.2)

Если ввести обозначения , то условие (15.2) можно переписать в форме (15.3)

Определение . Внутренняя точка М 0 области определения функции z = f (M) называется точкой разрыва функции, если в этой точке не выполняются условия (15.2), (15.3).

Замечание. Множество точек разрыва может образовывать на плоскости или в пространстве линии или поверхности разрыва .

Примеры.

Свойства пределов и непрерывных функций

Так как определения предела и непрерывности для функции нескольких переменных практически совпадает с соответствующими определениями для функции одной переменной, то для функций нескольких переменных сохраняются все свойства пределов и непрерывных функций, доказанные в первой части курса, а именно:

1) Если существуют то существуют и (если ).

2) Если а и для любого i существуют пределы и существует , где М 0 , то существует и предел сложной функции при , где - координаты точки Р 0 .

3) Если функции f(M) и g(M) непрерывны в точке М 0 , то в этой точке непрерывны и функции f(M) + g(M), kf(M), f(M) g(M), f(M)/g(M) (если g(M 0) ≠ 0).

4) Если функции непрерывны в точке Р 0 , а функция непрерывна в точке М 0 , где , то сложная функция непрерывна в точке Р 0 .

5) Функция непрерывная в замкнутой ограниченной области D , принимает в этой области свое наибольшее и наименьшее значения.

6) Если функция непрерывная в замкнутой ограниченной области D , принимает в этой области значения А и В , то она принимает в области D и любое промежуточное значение, лежащее между А и В .

7) Если функция непрерывная в замкнутой ограниченной области D , принимает в этой области значения разных знаков, то найдется по крайней мере одна точка из области D , в которой f = 0.

Частные производные

Рассмотрим изменение функции при задании приращения только одному из ее аргументов – х i , и назовем его .

Определение . Частной производной функции по аргументу х i называется .

Обозначения: .

Таким образом, частная производная функции нескольких переменных определяется фактически как производная функции одной переменной – х i . Поэтому для нее справедливы все свойства производных, доказанные для функции одной переменной.

Замечание. При практическом вычислении частных производных пользуемся обычными правилами дифференцирования функции одной переменной, полагая аргумент, по которому ведется дифференцирование, переменным, а остальные аргументы – постоянными.

Примеры .

1. z = 2x ² + 3xy –12y ² + 5x – 4y +2,

2. z = x y ,

Геометрическая интерпретация частных производных функции двух переменных

Рассмотрим уравнение поверхности z = f (x,y) и проведем плоскость х = const. Выберем на линии пересечения плоскости с поверхностью точку М (х,у) . Если задать аргументу у приращение Δу и рассмотреть точку Т на кривой с координатами (х, у+ Δу, z+ Δ y z ), то тангенс угла, образованного секущей МТ с положительным направлением оси Оу , будет равен . Переходя к пределу при , получим, что частная производная равна тангенсу угла, образованного касательной к полученной кривой в точке М с положительным направлением оси Оу. Соответственно частная производная равна тангенсу угла с осью Ох касательной к кривой, полученной в результате сечения поверхности z = f (x,y) плоскостью y = const.

Дифференцируемость функции нескольких переменных

При исследовании вопросов, связанных с дифференцируемостью, ограничимся случаем функции трех переменных, поскольку все доказательства для большего количества переменных проводятся так же.

Определение . Полным приращением функции u = f(x, y, z) называется

Теорема 1. Если частные производные существуют в точке (х 0 , у 0 , z 0 ) и в некоторой ее окрестности и непрерывны в точке (x 0 , y 0 , z 0 ) , то- ограниченные (т.к. их модули не превышают 1).

Тогда приращение функции, удовлетворяющей условиям теоремы 1, можно представить в виде: , (15.6)

Определение . Если приращение функции u = f (x, y, z) в точке (x 0 , y 0 , z 0) можно представить в виде (15.6), (15.7), то функция называется дифференцируемой в этой точке, а выражение - главной линейной частью приращения или полным дифференциалом рассматриваемой функции.

Обозначения: du, df (x 0 , y 0 , z 0).

Так же, как в случае функции одной переменной, дифференциалами независимых переменных считаются их произвольные приращения, поэтому

Замечание 1. Итак, утверждение «функция дифференцируема» не равнозначно утверждению «функция имеет частные производные» - для дифференцируемости требуется еще и непрерывность этих производных в рассматриваемой точке.

.

Рассмотрим функцию и выберем х 0 = 1, у 0 = 2. Тогда Δх = 1,02 – 1 = 0,02; Δу = 1,97 – 2 = -0,03. Найдем ,

Следовательно, учитывая, что f (1, 2) = 3, получим.